Abstract:Highly accurate force fields are a mandatory requirement to generate predictive simulations. In this regard, Machine Learning Force Fields (MLFFs) have emerged as a revolutionary approach in computational chemistry and materials science, combining the accuracy of quantum mechanical methods with computational efficiency orders of magnitude superior to ab-initio methods. This chapter provides an introduction of the fundamentals of learning and how it is applied to construct MLFFs, detailing key methodologies such as neural network potentials and kernel-based models. Emphasis is placed on the construction of SchNet model, as one of the most elemental neural network-based force fields that are nowadays the basis of modern architectures. Additionally, the GDML framework is described in detail as an example of how the elegant formulation of kernel methods can be used to construct mathematically robust and physics-inspired MLFFs. The ongoing advancements in MLFF development continue to expand their applicability, enabling precise simulations of large and complex systems that were previously beyond reach. This chapter concludes by highlighting the transformative impact of MLFFs on scientific research, underscoring their role in driving future discoveries in the fields of chemistry, physics, and materials science.