Abstract:Traditional methods for aligning Large Language Models (LLMs), such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on implicit principles, limiting interpretability. Constitutional AI (CAI) offers an explicit, rule-based framework for guiding model outputs. Building on this, we refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets. By improving principle generation, clustering, and embedding processes, our approach enhances the accuracy and generalizability of extracted principles across synthetic and real-world datasets. While in-context alignment yields modest improvements, our results highlight the potential of these principles to foster more transparent and adaptable alignment methods, offering a promising direction for future advancements beyond traditional fine-tuning.