Abstract:We develop and evaluate a method for learning solution operators to nonlinear problems governed by partial differential equations. The approach is based on a finite element discretization and aims at representing the solution operator by an MLP that takes latent variables as input. The latent variables will typically correspond to parameters in a parametrization of input data such as boundary conditions, coefficients, and right-hand sides. The loss function is most often an energy functional and we formulate efficient parallelizable training algorithms based on assembling the energy locally on each element. For large problems, the learning process can be made more efficient by using only a small fraction of randomly chosen elements in the mesh in each iteration. The approach is evaluated on several relevant test cases, where learning the solution operator turns out to be beneficial compared to classical numerical methods.
Abstract:We consider an inverse problem involving the reconstruction of the solution to a nonlinear partial differential equation (PDE) with unknown boundary conditions. Instead of direct boundary data, we are provided with a large dataset of boundary observations for typical solutions (collective data) and a bulk measurement of a specific realization. To leverage this collective data, we first compress the boundary data using proper orthogonal decomposition (POD) in a linear expansion. Next, we identify a possible nonlinear low-dimensional structure in the expansion coefficients using an auto-encoder, which provides a parametrization of the dataset in a lower-dimensional latent space. We then train a neural network to map the latent variables representing the boundary data to the solution of the PDE. Finally, we solve the inverse problem by optimizing a data-fitting term over the latent space. We analyze the underlying stabilized finite element method in the linear setting and establish optimal error estimates in the $H^1$ and $L^2$-norms. The nonlinear problem is then studied numerically, demonstrating the effectiveness of our approach.