Abstract:Previous research has shown that Artificial Intelligence is capable of distinguishing between authentic paintings by a given artist and human-made forgeries with remarkable accuracy, provided sufficient training. However, with the limited amount of existing known forgeries, augmentation methods for forgery detection are highly desirable. In this work, we examine the potential of incorporating synthetic artworks into training datasets to enhance the performance of forgery detection. Our investigation focuses on paintings by Vincent van Gogh, for which we release the first dataset specialized for forgery detection. To reinforce our results, we conduct the same analyses on the artists Amedeo Modigliani and Raphael. We train a classifier to distinguish original artworks from forgeries. For this, we use human-made forgeries and imitations in the style of well-known artists and augment our training sets with images in a similar style generated by Stable Diffusion and StyleGAN. We find that the additional synthetic forgeries consistently improve the detection of human-made forgeries. In addition, we find that, in line with previous research, the inclusion of synthetic forgeries in the training also enables the detection of AI-generated forgeries, especially if created using a similar generator.
Abstract:In recent years, Transformers, initially developed for language, have been successfully applied to visual tasks. Vision Transformers have been shown to push the state-of-the-art in a wide range of tasks, including image classification, object detection, and semantic segmentation. While ample research has shown promising results in art attribution and art authentication tasks using Convolutional Neural Networks, this paper examines if the superiority of Vision Transformers extends to art authentication, improving, thus, the reliability of computer-based authentication of artworks. Using a carefully compiled dataset of authentic paintings by Vincent van Gogh and two contrast datasets, we compare the art authentication performances of Swin Transformers with those of EfficientNet. Using a standard contrast set containing imitations and proxies (works by painters with styles closely related to van Gogh), we find that EfficientNet achieves the best performance overall. With a contrast set that only consists of imitations, we find the Swin Transformer to be superior to EfficientNet by achieving an authentication accuracy of over 85%. These results lead us to conclude that Vision Transformers represent a strong and promising contender in art authentication, particularly in enhancing the computer-based ability to detect artistic imitations.