Abstract:This paper explores conditional image generation with a One-Vs-All classifier based on the Generative Adversarial Networks (GANs). Instead of the real/fake discriminator used in vanilla GANs, we propose to extend the discriminator to a One-Vs-All classifier (GAN-OVA) that can distinguish each input data to its category label. Specifically, we feed certain additional information as conditions to the generator and take the discriminator as a One-Vs-All classifier to identify each conditional category. Our model can be applied to different divergence or distances used to define the objective function, such as Jensen-Shannon divergence and Earth-Mover (or called Wasserstein-1) distance. We evaluate GAN-OVAs on MNIST and CelebA-HQ datasets, and the experimental results show that GAN-OVAs make progress toward stable training over regular conditional GANs. Furthermore, GAN-OVAs effectively accelerate the generation process of different classes and improves generation quality.
Abstract:Deep neural network (DNN) with the state of art performance has emerged as a viable and lucrative business service. However, those impressive performances require a large number of computational resources, which comes at a high cost for the model creators. The necessity for protecting DNN models from illegal reproducing and distribution appears salient now. Recently, trigger-set watermarking, breaking the white-box restriction, relying on adversarial training pre-defined (incorrect) labels for crafted inputs, and subsequently using them to verify the model authenticity, has been the main topic of DNN ownership verification. While these methods have successfully demonstrated robustness against removal attacks, few are effective against the tampering attacks from competitors forging the fake watermarks and dogging in the manager. In this paper, we put forth a new framework of the trigger-set watermark by embedding a unique Serial Number (relatedness less original labels) to the deep neural network for model ownership identification, which is both robust to model pruning and resist to tampering attacks. Experiment results demonstrate that the DNN Serial Number only incurs slight accuracy degradation of the original performance and is valid for ownership verification.