Abstract:Because of their excellent asymptotic and finite-length performance, spatially-coupled (SC) codes are a class of low-density parity-check codes that is gaining increasing attention. Multi-dimensional (MD) SC codes are constructed by connecting copies of an SC code via relocations in order to mitigate various sources of non-uniformity and improve performance in many data storage and data transmission systems. As the number of degrees of freedom in the MD-SC code design increases, appropriately exploiting them becomes more difficult because of the complexity growth of the design process. In this paper, we propose a probabilistic framework for the MD-SC code design, which is based on the gradient-descent (GD) algorithm, to design better MD codes and address this challenge. In particular, we express the expected number of short cycles, which we seek to minimize, in the graph representation of the code in terms of entries of a probability-distribution matrix that characterizes the MD-SC code design. We then find a locally-optimal probability distribution, which serves as the starting point of a finite-length algorithmic optimizer that produces the final MD-SC code. We offer the theoretical analysis as well as the algorithms, and we present experimental results demonstrating that our MD codes, conveniently called GD-MD codes, have notably lower short cycle numbers compared with the available state-of-the-art. Moreover, our algorithms converge on solutions in few iterations, which confirms the complexity reduction as a result of limiting the search space via the locally-optimal GD-MD distributions.
Abstract:DNA strands serve as a storage medium for $4$-ary data over the alphabet $\{A,T,G,C\}$. DNA data storage promises formidable information density, long-term durability, and ease of replicability. However, information in this intriguing storage technology might be corrupted. Experiments have revealed that DNA sequences with long homopolymers and/or with low $GC$-content are notably more subject to errors upon storage. This paper investigates the utilization of the recently-introduced method for designing lexicographically-ordered constrained (LOCO) codes in DNA data storage. This paper introduces DNA LOCO (D-LOCO) codes, over the alphabet $\{A,T,G,C\}$ with limited runs of identical symbols. These codes come with an encoding-decoding rule we derive, which provides affordable encoding-decoding algorithms. In terms of storage overhead, the proposed encoding-decoding algorithms outperform those in the existing literature. Our algorithms are readily reconfigurable. D-LOCO codes are intrinsically balanced, which allows us to achieve balancing over the entire DNA strand with minimal rate penalty. Moreover, we propose four schemes to bridge consecutive codewords, three of which guarantee single substitution error detection per codeword. We examine the probability of undetecting errors. We also show that D-LOCO codes are capacity-achieving and that they offer remarkably high rates at moderate lengths.