Abstract:Cloth manipulation is an important aspect of many everyday tasks and remains a significant challenge for robots. While existing research has made strides in tasks like cloth smoothing and folding, many studies struggle with common failure modes (crumpled corners/edges, incorrect grasp configurations) that a preliminary step of cloth layer detection can solve. We present a novel method for classifying the number of grasped cloth layers using a custom gripper equipped with DenseTact 2.0 optical tactile sensors. After grasping a cloth, the gripper performs an anthropomorphic rubbing motion while collecting optical flow, 6-axis wrench, and joint state data. Using this data in a transformer-based network achieves a test accuracy of 98.21% in correctly classifying the number of grasped layers, showing the effectiveness of our dynamic rubbing method. Evaluating different inputs and model architectures highlights the usefulness of using tactile sensor information and a transformer model for this task. A comprehensive dataset of 368 labeled trials was collected and made open-source along with this paper. Our project page is available at https://armlabstanford.github.io/dynamic-cloth-detection.
Abstract:The ability to grasp and manipulate small objects in cluttered environments remains a significant challenge. This paper introduces a novel approach that utilizes a tactile sensor-equipped gripper with eight degrees of freedom to overcome these limitations. We employ DenseTact 2.0 for the gripper, enabling precise control and improved grasp success rates, particularly for small objects ranging from 5mm to 25mm. Our integrated strategy incorporates the robot arm, gripper, and sensor to manipulate and orient small objects for subsequent classification effectively. We contribute a specialized dataset designed for classifying these objects based on tactile sensor output and a new control algorithm for in-hand orientation tasks. Our system demonstrates 88% of successful grasp and successfully classified small objects in cluttered scenarios.