Abstract:Virtual bidding plays an important role in two-settlement electric power markets, as it can reduce discrepancies between day-ahead and real-time markets. Renewable energy penetration increases volatility in electricity prices, making accurate forecasting critical for virtual bidders, reducing uncertainty and maximizing profits. This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market. The proposed model leverages various time-series features, including load forecasts, solar and wind generation forecasts, and temporal attributes. The model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week. Based on the price spread prediction results, several trading strategies are proposed and the most effective strategy for maximizing cumulative profit under realistic market conditions is identified through backtesting. The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period. The proposed method underscores the importance of an accurate electricity price forecasting model and introduces a new method of evaluating the price forecast model from a virtual bidder's perspective, providing valuable insights for future research.
Abstract:This paper presents a deep learning-based approach for hourly power outage probability prediction within census tracts encompassing a utility company's service territory. Two distinct deep learning models, conditional Multi-Layer Perceptron (MLP) and unconditional MLP, were developed to forecast power outage probabilities, leveraging a rich array of input features gathered from publicly available sources including weather data, weather station locations, power infrastructure maps, socio-economic and demographic statistics, and power outage records. Given a one-hour-ahead weather forecast, the models predict the power outage probability for each census tract, taking into account both the weather prediction and the location's characteristics. The deep learning models employed different loss functions to optimize prediction performance. Our experimental results underscore the significance of socio-economic factors in enhancing the accuracy of power outage predictions at the census tract level.