Abstract:Many machine learning and optimization algorithms are built upon the framework of stochastic approximation (SA), for which the selection of step-size (or learning rate) is essential for success. For the sake of clarity, this paper focuses on the special case $\alpha_n = \alpha_0 n^{-\rho}$ at iteration $n$, with $\rho \in [0,1]$ and $\alpha_0>0$ design parameters. It is most common in practice to take $\rho=0$ (constant step-size), while in more theoretically oriented papers a vanishing step-size is preferred. In particular, with $\rho \in (1/2, 1)$ it is known that on applying the averaging technique of Polyak and Ruppert, the mean-squared error (MSE) converges at the optimal rate of $O(1/n)$ and the covariance in the central limit theorem (CLT) is minimal in a precise sense. The paper revisits step-size selection in a general Markovian setting. Under readily verifiable assumptions, the following conclusions are obtained provided $0<\rho<1$: $\bullet$ Parameter estimates converge with probability one, and also in $L_p$ for any $p\ge 1$. $\bullet$ The MSE may converge very slowly for small $\rho$, of order $O(\alpha_n^2)$ even with averaging. $\bullet$ For linear stochastic approximation the source of slow convergence is identified: for any $\rho\in (0,1)$, averaging results in estimates for which the error $\textit{covariance}$ vanishes at the optimal rate, and moreover the CLT covariance is optimal in the sense of Polyak and Ruppert. However, necessary and sufficient conditions are obtained under which the $\textit{bias}$ converges to zero at rate $O(\alpha_n)$. This is the first paper to obtain such strong conclusions while allowing for $\rho \le 1/2$. A major conclusion is that the choice of $\rho =0$ or even $\rho<1/2$ is justified only in select settings -- In general, bias may preclude fast convergence.
Abstract:Theory and application of stochastic approximation (SA) has grown within the control systems community since the earliest days of adaptive control. This paper takes a new look at the topic, motivated by recent results establishing remarkable performance of SA with (sufficiently small) constant step-size $\alpha>0$. If averaging is implemented to obtain the final parameter estimate, then the estimates are asymptotically unbiased with nearly optimal asymptotic covariance. These results have been obtained for random linear SA recursions with i.i.d. coefficients. This paper obtains very different conclusions in the more common case of geometrically ergodic Markovian disturbance: (i) The $\textit{target bias}$ is identified, even in the case of non-linear SA, and is in general non-zero. The remaining results are established for linear SA recursions: (ii) the bivariate parameter-disturbance process is geometrically ergodic in a topological sense; (iii) the representation for bias has a simpler form in this case, and cannot be expected to be zero if there is multiplicative noise; (iv) the asymptotic covariance of the averaged parameters is within $O(\alpha)$ of optimal. The error term is identified, and may be massive if mean dynamics are not well conditioned. The theory is illustrated with application to TD-learning.