Abstract:Quantization is one of the most popular techniques for reducing computation time and shrinking model size. However, ensuring the accuracy of quantized models typically involves calibration using training data, which may be inaccessible due to privacy concerns. In such cases, zero-shot quantization, a technique that relies on pretrained models and statistical information without the need for specific training data, becomes valuable. Exploring zero-shot quantization in the infrared domain is important due to the prevalence of infrared imaging in sensitive fields like medical and security applications. In this work, we demonstrate how to apply zero-shot quantization to an object detection model retrained with thermal imagery. We use batch normalization statistics of the model to distill data for calibration. RGB image-trained models and thermal image-trained models are compared in the context of zero-shot quantization. Our investigation focuses on the contributions of mean and standard deviation statistics to zero-shot quantization performance. Additionally, we compare zero-shot quantization with post-training quantization on a thermal dataset. We demonstrated that zero-shot quantization successfully generates data that represents the training dataset for the quantization of object detection models. Our results indicate that our zero-shot quantization framework is effective in the absence of training data and is well-suited for the infrared domain.