Abstract:This paper presents a novel ML-based methodology for geothermal exploration towards PFA applications. Our methodology is provided through our open-source ML framework, GeoThermalCloud \url{https://github.com/SmartTensors/GeoThermalCloud.jl}. The GeoThermalCloud uses a series of unsupervised, supervised, and physics-informed ML methods available in SmartTensors AI platform \url{https://github.com/SmartTensors}. Here, the presented analyses are performed using our unsupervised ML algorithm called NMF$k$, which is available in the SmartTensors AI platform. Our ML algorithm facilitates the discovery of new phenomena, hidden patterns, and mechanisms that helps us to make informed decisions. Moreover, the GeoThermalCloud enhances the collected PFA data and discovers signatures representative of geothermal resources. Through GeoThermalCloud, we could identify hidden patterns in the geothermal field data needed to discover blind systems efficiently. Crucial geothermal signatures often overlooked in traditional PFA are extracted using the GeoThermalCloud and analyzed by the subject matter experts to provide ML-enhanced PFA, which is informative for efficient exploration. We applied our ML methodology to various open-source geothermal datasets within the U.S. (some of these are collected by past PFA work). The results provide valuable insights into resource types within those regions. This ML-enhanced workflow makes the GeoThermalCloud attractive for the geothermal community to improve existing datasets and extract valuable information often unnoticed during geothermal exploration.
Abstract:Physics-informed Machine Learning has recently become attractive for learning physical parameters and features from simulation and observation data. However, most existing methods do not ensure that the physics, such as balance laws (e.g., mass, momentum, energy conservation), are constrained. Some recent works (e.g., physics-informed neural networks) softly enforce physics constraints by including partial differential equation (PDE)-based loss functions but need re-discretization of the PDEs using auto-differentiation. Training these neural nets on observational data showed that one could solve forward and inverse problems in one shot. They evaluate the state variables and the parameters in a PDE. This re-discretization of PDEs is not necessarily an attractive option for domain scientists that work with physics-based codes that have been developed for decades with sophisticated discretization techniques to solve complex process models and advanced equations of state. This paper proposes a physics constrained machine learning framework, AdjointNet, allowing domain scientists to embed their physics code in neural network training workflows. This embedding ensures that physics is constrained everywhere in the domain. Additionally, the mathematical properties such as consistency, stability, and convergence vital to the numerical solution of a PDE are still satisfied. We show that the proposed AdjointNet framework can be used for parameter estimation (and uncertainty quantification by extension) and experimental design using active learning. The applicability of our framework is demonstrated for four flow cases. Results show that AdjointNet-based inversion can estimate process model parameters with reasonable accuracy. These examples demonstrate the applicability of using existing software with no changes in source code to perform accurate and reliable inversion of model parameters.