Abstract:The task of out-of-distribution (OOD) detection is vital to realize safe and reliable operation for real-world applications. After the failure of likelihood-based detection in high dimensions had been shown, approaches based on the \emph{typical set} have been attracting attention; however, they still have not achieved satisfactory performance. Beginning by presenting the failure case of the typicality-based approach, we propose a new reconstruction error-based approach that employs normalizing flow (NF). We further introduce a typicality-based penalty, and by incorporating it into the reconstruction error in NF, we propose a new OOD detection method, penalized reconstruction error (PRE). Because the PRE detects test inputs that lie off the in-distribution manifold, it effectively detects adversarial examples as well as OOD examples. We show the effectiveness of our method through the evaluation using natural image datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.
Abstract:Virtual Adversarial Training (VAT) has shown impressive results among recently developed regularization methods called consistency regularization. VAT utilizes adversarial samples, generated by injecting perturbation in the input space, for training and thereby enhances the generalization ability of a classifier. However, such adversarial samples can be generated only within a very small area around the input data point, which limits the adversarial effectiveness of such samples. To address this problem we propose LVAT (Latent space VAT), which injects perturbation in the latent space instead of the input space. LVAT can generate adversarial samples flexibly, resulting in more adverse effects and thus more effective regularization. The latent space is built by a generative model, and in this paper, we examine two different type of models: variational auto-encoder and normalizing flow, specifically Glow. We evaluated the performance of our method in both supervised and semi-supervised learning scenarios for an image classification task using SVHN and CIFAR-10 datasets. In our evaluation, we found that our method outperforms VAT and other state-of-the-art methods.