Abstract:The increasing frequency and severity of wildfires highlight the need for accurate fire and plume spread models. We introduce an approach that effectively isolates and tracks fire and plume behavior across various spatial and temporal scales and image types, identifying physical phenomena in the system and providing insights useful for developing and validating models. Our method combines image segmentation and graph theory to delineate fire fronts and plume boundaries. We demonstrate that the method effectively distinguishes fires and plumes from visually similar objects. Results demonstrate the successful isolation and tracking of fire and plume dynamics across various image sources, ranging from synoptic-scale ($10^4$-$10^5$ m) satellite images to sub-microscale ($10^0$-$10^1$ m) images captured close to the fire environment. Furthermore, the methodology leverages image inpainting and spatio-temporal dataset generation for use in statistical and machine learning models.
Abstract:Data-driven techniques are being increasingly applied to complement physics-based models in fire science. However, the lack of sufficiently large datasets continues to hinder the application of certain machine learning techniques. In this paper, we use simulated data to investigate the ability of neural networks to parameterize dynamics in fire science. In particular, we investigate neural networks that map five key parameters in fire spread to the first arrival time, and the corresponding inverse problem. By using simulated data, we are able to characterize the error, the required dataset size, and the convergence properties of these neural networks. For the inverse problem, we quantify the network's sensitivity in estimating each of the key parameters. The findings demonstrate the potential of machine learning in fire science, highlight the challenges associated with limited dataset sizes, and quantify the sensitivity of neural networks to estimate key parameters governing fire spread dynamics.