Abstract:Modeling complex conditional distributions is critical in a variety of settings. Despite a long tradition of research into conditional density estimation, current methods employ either simple parametric forms or are difficult to learn in practice. This paper employs normalising flows as a flexible likelihood model and presents an efficient method for fitting them to complex densities. These estimators must trade-off between modeling distributional complexity, functional complexity and heteroscedasticity without overfitting. We recognize these trade-offs as modeling decisions and develop a Bayesian framework for placing priors over these conditional density estimators using variational Bayesian neural networks. We evaluate this method on several small benchmark regression datasets, on some of which it obtains state of the art performance. Finally, we apply the method to two spatial density modeling tasks with over 1 million datapoints using the New York City yellow taxi dataset and the Chicago crime dataset.