Abstract:Static LiDAR scanners produce accurate, dense, colored point clouds, but often contain obtrusive artifacts which makes them ill-suited for direct display. We propose an efficient method to render photorealistic images of such scans without any expensive preprocessing or training of a scene-specific model. A naive projection of the point cloud to the output view using 1x1 pixels is fast and retains the available detail, but also results in unintelligible renderings as background points leak in between the foreground pixels. The key insight is that these projections can be transformed into a realistic result using a deep convolutional model in the form of a U-Net, and a depth-based heuristic that prefilters the data. The U-Net also handles LiDAR-specific problems such as missing parts due to occlusion, color inconsistencies and varying point densities. We also describe a method to generate synthetic training data to deal with imperfectly-aligned ground truth images. Our method achieves real-time rendering rates using an off-the-shelf GPU and outperforms the state-of-the-art in both speed and quality.
Abstract:Over the past year, 3D Gaussian Splatting (3DGS) has received significant attention for its ability to represent 3D scenes in a perceptually accurate manner. However, it can require a substantial amount of storage since each splat's individual data must be stored. While compression techniques offer a potential solution by reducing the memory footprint, they still necessitate retrieving the entire scene before any part of it can be rendered. In this work, we introduce a novel approach for progressively rendering such scenes, aiming to display visible content that closely approximates the final scene as early as possible without loading the entire scene into memory. This approach benefits both on-device rendering applications limited by memory constraints and streaming applications where minimal bandwidth usage is preferred. To achieve this, we approximate the contribution of each Gaussian to the final scene and construct an order of prioritization on their inclusion in the rendering process. Additionally, we demonstrate that our approach can be combined with existing compression methods to progressively render (and stream) 3DGS scenes, optimizing bandwidth usage by focusing on the most important splats within a scene. Overall, our work establishes a foundation for making remotely hosted 3DGS content more quickly accessible to end-users in over-the-top consumption scenarios, with our results showing significant improvements in quality across all metrics compared to existing methods.