Abstract:We present a novel machine-learning approach for detecting faint point sources in high-contrast adaptive optics imaging datasets. The most widely used algorithms for primary subtraction aim to decouple bright stellar speckle noise from planetary signatures by subtracting an approximation of the temporally evolving stellar noise from each frame in an imaging sequence. Our approach aims to improve the stellar noise approximation and increase the planet detection sensitivity by leveraging deep learning in a novel direct imaging post-processing algorithm. We show that a convolutional autoencoder neural network, trained on an extensive reference library of real imaging sequences, accurately reconstructs the stellar speckle noise at the location of a potential planet signal. This tool is used in a post-processing algorithm we call Direct Exoplanet Detection with Convolutional Image Reconstruction, or ConStruct. The reliability and sensitivity of ConStruct are assessed using real Keck/NIRC2 angular differential imaging datasets. Of the 30 unique point sources we examine, ConStruct yields a higher S/N than traditional PCA-based processing for 67$\%$ of the cases and improves the relative contrast by up to a factor of 2.6. This work demonstrates the value and potential of deep learning to take advantage of a diverse reference library of point spread function realizations to improve direct imaging post-processing. ConStruct and its future improvements may be particularly useful as tools for post-processing high-contrast images from the James Webb Space Telescope and extreme adaptive optics instruments, both for the current generation and those being designed for the upcoming 30 meter-class telescopes.
Abstract:Understanding differences between sub-stellar spectral data and models has proven to be a major challenge, especially for self-consistent model grids that are necessary for a thorough investigation of brown dwarf atmospheres. Using the supervised machine learning method of the random forest, we study the information content of 14 previously published model grids of brown dwarfs (from 1997 to 2021). The random forest method allows us to analyze the predictive power of these model grids, as well as interpret data within the framework of Approximate Bayesian Computation (ABC). Our curated dataset includes 3 benchmark brown dwarfs (Gl 570D, {\epsilon} Indi Ba and Bb) as well as a sample of 19 L and T dwarfs; this sample was previously analyzed in Lueber et al. (2022) using traditional Bayesian methods (nested sampling). We find that the effective temperature of a brown dwarf can be robustly predicted independent of the model grid chosen for the interpretation. However, inference of the surface gravity is model-dependent. Specifically, the BT-Settl, Sonora Bobcat and Sonora Cholla model grids tend to predict logg ~3-4 (cgs units) even after data blueward of 1.2 {\mu}m have been disregarded to mitigate for our incomplete knowledge of the shapes of alkali lines. Two major, longstanding challenges associated with understanding the influence of clouds in brown dwarf atmospheres remain: our inability to model them from first principles and also to robustly validate these models.