Abstract:Material selection plays a pivotal role in many industries, from manufacturing to construction. Material selection is usually carried out after several cycles of conceptual design, during which designers iteratively refine the design solution and the intended manufacturing approach. In design research, material selection is typically treated as an optimization problem with a single correct answer. Moreover, it is also often restricted to specific types of objects or design functions, which can make the selection process computationally expensive and time-consuming. In this paper, we introduce MSEval, a novel dataset which is comprised of expert material evaluations across a variety of design briefs and criteria. This data is designed to serve as a benchmark to facilitate the evaluation and modification of machine learning models in the context of material selection for conceptual design.
Abstract:Material selection is a crucial step in conceptual design due to its significant impact on the functionality, aesthetics, manufacturability, and sustainability impact of the final product. This study investigates the use of Large Language Models (LLMs) for material selection in the product design process and compares the performance of LLMs against expert choices for various design scenarios. By collecting a dataset of expert material preferences, the study provides a basis for evaluating how well LLMs can align with expert recommendations through prompt engineering and hyperparameter tuning. The divergence between LLM and expert recommendations is measured across different model configurations, prompt strategies, and temperature settings. This approach allows for a detailed analysis of factors influencing the LLMs' effectiveness in recommending materials. The results from this study highlight two failure modes, and identify parallel prompting as a useful prompt-engineering method when using LLMs for material selection. The findings further suggest that, while LLMs can provide valuable assistance, their recommendations often vary significantly from those of human experts. This discrepancy underscores the need for further research into how LLMs can be better tailored to replicate expert decision-making in material selection. This work contributes to the growing body of knowledge on how LLMs can be integrated into the design process, offering insights into their current limitations and potential for future improvements.