Abstract:The life cycle of machine learning (ML) applications consists of two stages: model development and model deployment. However, traditional ML systems (e.g., training-specific or inference-specific systems) focus on one particular stage or phase of the life cycle of ML applications. These systems often aim at optimizing model training or accelerating model inference, and they frequently assume homogeneous infrastructure, which may not always reflect real-world scenarios that include cloud data centers, local servers, containers, and serverless platforms. We present StraightLine, an end-to-end resource-aware scheduler that schedules the optimal resources (e.g., container, virtual machine, or serverless) for different ML application requests in a hybrid infrastructure. The key innovation is an empirical dynamic placing algorithm that intelligently places requests based on their unique characteristics (e.g., request frequency, input data size, and data distribution). In contrast to existing ML systems, StraightLine offers end-to-end resource-aware placement, thereby it can significantly reduce response time and failure rate for model deployment when facing different computing resources in the hybrid infrastructure.
Abstract:This paper explores the concept of leveraging generative AI as a mapping assistant for enhancing the efficiency of collaborative mapping. We present results of an experiment that combines multiple sources of volunteered geographic information (VGI) and large language models (LLMs). Three analysts described the content of crowdsourced Mapillary street-level photographs taken along roads in a small test area in Miami, Florida. GPT-3.5-turbo was instructed to suggest the most appropriate tagging for each road in OpenStreetMap (OSM). The study also explores the utilization of BLIP-2, a state-of-the-art multimodal pre-training method as an artificial analyst of street-level photographs in addition to human analysts. Results demonstrate two ways to effectively increase the accuracy of mapping suggestions without modifying the underlying AI models: by (1) providing a more detailed description of source photographs, and (2) combining prompt engineering with additional context (e.g. location and objects detected along a road). The first approach increases the suggestion accuracy by up to 29%, and the second one by up to 20%.