Abstract:Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
Abstract:Equilibrium propagation is a recently introduced method to use and train artificial neural networks in which the network is at the minimum (more generally extremum) of an energy functional. Equilibrium propagation has shown good performance on a number of benchmark tasks. Here we extend equilibrium propagation in two directions. First we show that there is a natural quantum generalization of equilibrium propagation in which a quantum neural network is taken to be in the ground state (more generally any eigenstate) of the network Hamiltonian, with a similar training mechanism that exploits the fact that the mean energy is extremal on eigenstates. Second we extend the analysis of equilibrium propagation at finite temperature, showing that thermal fluctuations allow one to naturally train the network without having to clamp the output layer during training. We also study the low temperature limit of equilibrium propagation.