Abstract:This paper deals with stochastic optimization problems involving Markovian noise with a zero-order oracle. We present and analyze a novel derivative-free method for solving such problems in strongly convex smooth and non-smooth settings with both one-point and two-point feedback oracles. Using a randomized batching scheme, we show that when mixing time $τ$ of the underlying noise sequence is less than the dimension of the problem $d$, the convergence estimates of our method do not depend on $τ$. This observation provides an efficient way to interact with Markovian stochasticity: instead of invoking the expensive first-order oracle, one should use the zero-order oracle. Finally, we complement our upper bounds with the corresponding lower bounds. This confirms the optimality of our results.
Abstract:In machine learning models, the estimation of errors is often complex due to distribution bias, particularly in spatial data such as those found in environmental studies. We introduce an approach based on the ideas of importance sampling to obtain an unbiased estimate of the target error. By taking into account difference between desirable error and available data, our method reweights errors at each sample point and neutralizes the shift. Importance sampling technique and kernel density estimation were used for reweighteing. We validate the effectiveness of our approach using artificial data that resemble real-world spatial datasets. Our findings demonstrate advantages of the proposed approach for the estimation of the target error, offering a solution to a distribution shift problem. Overall error of predictions dropped from 7% to just 2% and it gets smaller for larger samples.