Abstract:Efficient management of traffic flow in urban environments presents a significant challenge, exacerbated by dynamic changes and the sheer volume of data generated by modern transportation networks. Traditional centralized traffic management systems often struggle with scalability and privacy concerns, hindering their effectiveness. This paper introduces a novel approach by combining Federated Learning (FL) and Meta-Learning (ML) to create a decentralized, scalable, and adaptive traffic management system. Our approach, termed Meta-Federated Learning, leverages the distributed nature of FL to process data locally at the edge, thereby enhancing privacy and reducing latency. Simultaneously, ML enables the system to quickly adapt to new traffic conditions without the need for extensive retraining. We implement our model across a simulated network of smart traffic devices, demonstrating that Meta-Federated Learning significantly outperforms traditional models in terms of prediction accuracy and response time. Furthermore, our approach shows remarkable adaptability to sudden changes in traffic patterns, suggesting a scalable solution for real-time traffic management in smart cities. This study not only paves the way for more resilient urban traffic systems but also exemplifies the potential of integrated FL and ML in other real-world applications.
Abstract:In the expanding field of machine learning, federated learning has emerged as a pivotal methodology for distributed data environments, ensuring privacy while leveraging decentralized data sources. However, the heterogeneity of client data and the need for tailored models necessitate the integration of personalization techniques to enhance learning efficacy and model performance. This paper introduces a novel framework that amalgamates personalized federated learning with robust control systems, aimed at optimizing both the learning process and the control of data flow across diverse networked environments. Our approach harnesses personalized algorithms that adapt to the unique characteristics of each client's data, thereby improving the relevance and accuracy of the model for individual nodes without compromising the overall system performance. To manage and control the learning process across the network, we employ a sophisticated control system that dynamically adjusts the parameters based on real-time feedback and system states, ensuring stability and efficiency. Through rigorous experimentation, we demonstrate that our integrated system not only outperforms standard federated learning models in terms of accuracy and learning speed but also maintains system integrity and robustness in face of varying network conditions and data distributions. The experimental results, obtained from a multi-client simulated environment with non-IID data distributions, underscore the benefits of integrating control systems into personalized federated learning frameworks, particularly in scenarios demanding high reliability and precision.