Efficient management of traffic flow in urban environments presents a significant challenge, exacerbated by dynamic changes and the sheer volume of data generated by modern transportation networks. Traditional centralized traffic management systems often struggle with scalability and privacy concerns, hindering their effectiveness. This paper introduces a novel approach by combining Federated Learning (FL) and Meta-Learning (ML) to create a decentralized, scalable, and adaptive traffic management system. Our approach, termed Meta-Federated Learning, leverages the distributed nature of FL to process data locally at the edge, thereby enhancing privacy and reducing latency. Simultaneously, ML enables the system to quickly adapt to new traffic conditions without the need for extensive retraining. We implement our model across a simulated network of smart traffic devices, demonstrating that Meta-Federated Learning significantly outperforms traditional models in terms of prediction accuracy and response time. Furthermore, our approach shows remarkable adaptability to sudden changes in traffic patterns, suggesting a scalable solution for real-time traffic management in smart cities. This study not only paves the way for more resilient urban traffic systems but also exemplifies the potential of integrated FL and ML in other real-world applications.