Abstract:We propose a novel, good-quality, and less demanding method for detecting knots on the surface of wooden logs using multimodal data fusion. Knots are a primary factor affecting the quality of sawn timber, making their detection fundamental to any timber grading or cutting optimization system. While X-ray computed tomography provides accurate knot locations and internal structures, it is often too slow or expensive for practical use. An attractive alternative is to use fast and cost-effective log surface measurements, such as laser scanners or RGB cameras, to detect surface knots and estimate the internal structure of wood. However, due to the small size of knots and noise caused by factors, such as bark and other natural variations, detection accuracy often remains low when only one measurement modality is used. In this paper, we demonstrate that by using a data fusion pipeline consisting of separate streams for RGB and point cloud data, combined by a late fusion module, higher knot detection accuracy can be achieved compared to using either modality alone. We further propose a simple yet efficient sawing angle optimization method that utilizes surface knot detections and cross-correlation to minimize the amount of unwanted arris knots, demonstrating its benefits over randomized sawing angles.
Abstract:We propose a novel Graph Neural Network-based method for segmentation based on data fusion of multimodal Scanning Electron Microscope (SEM) images. In most cases, Backscattered Electron (BSE) images obtained using SEM do not contain sufficient information for mineral segmentation. Therefore, imaging is often complemented with point-wise Energy-Dispersive X-ray Spectroscopy (EDS) spectral measurements that provide highly accurate information about the chemical composition but that are time-consuming to acquire. This motivates the use of sparse spectral data in conjunction with BSE images for mineral segmentation. The unstructured nature of the spectral data makes most traditional image fusion techniques unsuitable for BSE-EDS fusion. We propose using graph neural networks to fuse the two modalities and segment the mineral phases simultaneously. Our results demonstrate that providing EDS data for as few as 1% of BSE pixels produces accurate segmentation, enabling rapid analysis of mineral samples. The proposed data fusion pipeline is versatile and can be adapted to other domains that involve image data and point-wise measurements.