Abstract:This paper presents a robust monocular visual SLAM system that simultaneously utilizes point, line, and vanishing point features for accurate camera pose estimation and mapping. To address the critical challenge of achieving reliable localization in low-texture environments, where traditional point-based systems often fail due to insufficient visual features, we introduce a novel approach leveraging Global Primitives structural information to improve the system's robustness and accuracy performance. Our key innovation lies in constructing vanishing points from line features and proposing a weighted fusion strategy to build Global Primitives in the world coordinate system. This strategy associates multiple frames with non-overlapping regions and formulates a multi-frame reprojection error optimization, significantly improving tracking accuracy in texture-scarce scenarios. Evaluations on various datasets show that our system outperforms state-of-the-art methods in trajectory precision, particularly in challenging environments.