Abstract:Hyperspectral image (HSI) classification has garnered substantial attention in remote sensing fields. Recent Mamba architectures built upon the Selective State Space Models (S6) have demonstrated enormous potential in long-range sequence modeling. However, the high dimensionality of hyperspectral data and information redundancy pose challenges to the application of Mamba in HSI classification, suffering from suboptimal performance and computational efficiency. In light of this, this paper investigates a lightweight Interval Group Spatial-Spectral Mamba framework (IGroupSS-Mamba) for HSI classification, which allows for multi-directional and multi-scale global spatial-spectral information extraction in a grouping and hierarchical manner. Technically, an Interval Group S6 Mechanism (IGSM) is developed as the core component, which partitions high-dimensional features into multiple non-overlapping groups at intervals, and then integrates a unidirectional S6 for each group with a specific scanning direction to achieve non-redundant sequence modeling. Compared to conventional applying multi-directional scanning to all bands, this grouping strategy leverages the complementary strengths of different scanning directions while decreasing computational costs. To adequately capture the spatial-spectral contextual information, an Interval Group Spatial-Spectral Block (IGSSB) is introduced, in which two IGSM-based spatial and spectral operators are cascaded to characterize the global spatial-spectral relationship along the spatial and spectral dimensions, respectively. IGroupSS-Mamba is constructed as a hierarchical structure stacked by multiple IGSSB blocks, integrating a pixel aggregation-based downsampling strategy for multiscale spatial-spectral semantic learning from shallow to deep stages. Extensive experiments demonstrate that IGroupSS-Mamba outperforms the state-of-the-art methods.
Abstract:Hyperspectral image (HSI) classification constitutes the fundamental research in remote sensing fields. Convolutional Neural Networks (CNNs) and Transformers have demonstrated impressive capability in capturing spectral-spatial contextual dependencies. However, these architectures suffer from limited receptive fields and quadratic computational complexity, respectively. Fortunately, recent Mamba architectures built upon the State Space Model integrate the advantages of long-range sequence modeling and linear computational efficiency, exhibiting substantial potential in low-dimensional scenarios. Motivated by this, we propose a novel 3D-Spectral-Spatial Mamba (3DSS-Mamba) framework for HSI classification, allowing for global spectral-spatial relationship modeling with greater computational efficiency. Technically, a spectral-spatial token generation (SSTG) module is designed to convert the HSI cube into a set of 3D spectral-spatial tokens. To overcome the limitations of traditional Mamba, which is confined to modeling causal sequences and inadaptable to high-dimensional scenarios, a 3D-Spectral-Spatial Selective Scanning (3DSS) mechanism is introduced, which performs pixel-wise selective scanning on 3D hyperspectral tokens along the spectral and spatial dimensions. Five scanning routes are constructed to investigate the impact of dimension prioritization. The 3DSS scanning mechanism combined with conventional mapping operations forms the 3D-spectral-spatial mamba block (3DMB), enabling the extraction of global spectral-spatial semantic representations. Experimental results and analysis demonstrate that the proposed method outperforms the state-of-the-art methods on HSI classification benchmarks.