Abstract:In 2011, Hibbard suggested an intelligence measure for agents who compete in an adversarial sequence prediction game. We argue that Hibbard's idea should actually be considered as two separate ideas: first, that the intelligence of such agents can be measured based on the growth rates of the runtimes of the competitors that they defeat; and second, one specific (somewhat arbitrary) method for measuring said growth rates. Whereas Hibbard's intelligence measure is based on the latter growth-rate-measuring method, we survey other methods for measuring function growth rates, and exhibit the resulting Hibbard-like intelligence measures and taxonomies. Of particular interest, we obtain intelligence taxonomies based on Big-O and Big-Theta notation systems, which taxonomies are novel in that they challenge conventional notions of what an intelligence measure should look like. We discuss how intelligence measurement of sequence predictors can indirectly serve as intelligence measurement for agents with Artificial General Intelligence (AGIs).
Abstract:This book-length article combines several peer reviewed papers and new material to analyze the issues of ethical artificial intelligence (AI). The behavior of future AI systems can be described by mathematical equations, which are adapted to analyze possible unintended AI behaviors and ways that AI designs can avoid them. This article makes the case for utility-maximizing agents and for avoiding infinite sets in agent definitions. It shows how to avoid agent self-delusion using model-based utility functions and how to avoid agents that corrupt their reward generators (sometimes called "perverse instantiation") using utility functions that evaluate outcomes at one point in time from the perspective of humans at a different point in time. It argues that agents can avoid unintended instrumental actions (sometimes called "basic AI drives" or "instrumental goals") by accurately learning human values. This article defines a self-modeling agent framework and shows how it can avoid problems of resource limits, being predicted by other agents, and inconsistency between the agent's utility function and its definition (one version of this problem is sometimes called "motivated value selection"). This article also discusses how future AI will differ from current AI, the politics of AI, and the ultimate use of AI to help understand the nature of the universe and our place in it.
Abstract:Orseau and Ring, as well as Dewey, have recently described problems, including self-delusion, with the behavior of agents using various definitions of utility functions. An agent's utility function is defined in terms of the agent's history of interactions with its environment. This paper argues, via two examples, that the behavior problems can be avoided by formulating the utility function in two steps: 1) inferring a model of the environment from interactions, and 2) computing utility as a function of the environment model. Basing a utility function on a model that the agent must learn implies that the utility function must initially be expressed in terms of specifications to be matched to structures in the learned model. These specifications constitute prior assumptions about the environment so this approach will not work with arbitrary environments. But the approach should work for agents designed by humans to act in the physical world. The paper also addresses the issue of self-modifying agents and shows that if provided with the possibility to modify their utility functions agents will not choose to do so, under some usual assumptions.