Abstract:Topological Data Analysis methods can be useful for classification and clustering tasks in many different fields as they can provide two dimensional persistence diagrams that summarize important information about the shape of potentially complex and high dimensional data sets. The space of persistence diagrams can be endowed with various metrics such as the Wasserstein distance which admit a statistical structure and allow to use these summaries for machine learning algorithms. However, computing the distance between two persistence diagrams involves finding an optimal way to match the points of the two diagrams and may not always be an easy task for classical computers. In this work we explore the potential of quantum computers to estimate the distance between persistence diagrams, in particular we propose variational quantum algorithms for the Wasserstein distance as well as the $d^{c}_{p}$ distance. Our implementation is a weighted version of the Quantum Approximate Optimization Algorithm that relies on control clauses to encode the constraints of the optimization problem.
Abstract:Persistent homology, a powerful mathematical tool for data analysis, summarizes the shape of data through tracking topological features across changes in different scales. Classical algorithms for persistent homology are often constrained by running times and memory requirements that grow exponentially on the number of data points. To surpass this problem, two quantum algorithms of persistent homology have been developed based on two different approaches. However, both of these quantum algorithms consider a data set in the form of a point cloud, which can be restrictive considering that many data sets come in the form of time series. In this paper, we alleviate this issue by establishing a quantum Takens's delay embedding algorithm, which turns a time series into a point cloud by considering a pertinent embedding into a higher dimensional space. Having this quantum transformation of time series to point clouds, then one may use a quantum persistent homology algorithm to extract the topological features from the point cloud associated with the original times series.