Abstract:We consider a partially observable Markov decision problem (POMDP) that models a class of sequencing problems. Although POMDPs are typically intractable, our formulation admits tractable solution. Instead of maintaining a value function over a high-dimensional set of belief states, we reduce the state space to one of smaller dimension, in which grid-based dynamic programming techniques are effective. We develop an error bound for the resulting approximation, and discuss an application of the model to a problem in targeted advertising.