Abstract:Disaster response agencies have been shifting from a paradigm of climate forecasting towards one of anticipatory action: assessing not just what the climate will be, but how it will impact specific populations, thereby enabling proactive response and resource allocation. Machine learning models are becoming exceptionally powerful at climate forecasting, but methodological gaps remain in terms of facilitating anticipatory action. Here we provide an overview of anticipatory action, review relevant applications of machine learning, identify common challenges, and highlight areas where machine learning can uniquely contribute to advancing disaster response for populations most vulnerable to climate change.
Abstract:Armed conflict has led to an unprecedented number of internally displaced persons (IDPs) - individuals who are forced out of their homes but remain within their country. IDPs often urgently require shelter, food, and healthcare, yet prediction of when large fluxes of IDPs will cross into an area remains a major challenge for aid delivery organizations. Accurate forecasting of IDP migration would empower humanitarian aid groups to more effectively allocate resources during conflicts. We show that monthly flow of IDPs from province to province in both Syria and Yemen can be accurately forecasted one month in advance, using publicly available data. We model monthly IDP flow using data on food price, fuel price, wage, geospatial, and news data. We find that machine learning approaches can more accurately forecast migration trends than baseline persistence models. Our findings thus potentially enable proactive aid allocation for IDPs in anticipation of forecasted arrivals.