Abstract:Generation planning approaches face challenges in managing the incompatible mathematical structures between stochastic production simulations for reliability assessment and optimization models for generation planning, which hinders the integration of reliability constraints. This study proposes an approach to embedding reliability verification constraints into generation expansion planning by leveraging a weighted oblique decision tree (WODT) technique. For each planning year, a generation mix dataset, labeled with reliability assessment simulations, is generated. An WODT model is trained using this dataset. Reliability-feasible regions are extracted via depth-first search technique and formulated as disjunctive constraints. These constraints are then transformed into mixed-integer linear form using a convex hull modeling technique and embedded into a unit commitment-integrated generation expansion planning model. The proposed approach is validated through a long-term generation planning case study for the Electric Reliability Council of Texas (ERCOT) region, demonstrating its effectiveness in achieving reliable and optimal planning solutions.