Abstract:We study how neural emulators of partial differential equation solution operators internalize physical symmetries by introducing an influence-based diagnostic that measures the propagation of parameter updates between symmetry-related states, defined as the metric-weighted overlap of loss gradients evaluated along group orbits. This quantity probes the local geometry of the learned loss landscape and goes beyond forward-pass equivariance tests by directly assessing whether learning dynamics couple physically equivalent configurations. Applying our diagnostic to autoregressive fluid flow emulators, we show that orbit-wise gradient coherence provides the mechanism for learning to generalize over symmetry transformations and indicates when training selects a symmetry compatible basin. The result is a novel technique for evaluating if surrogate models have internalized symmetry properties of the known solution operator.




Abstract:We present a neural network architecture based upon the Autoencoder (AE) and Generative Adversarial Network (GAN) that promotes a convex latent distribution by training adversarially on latent space interpolations. By using an AE as both the generator and discriminator of a GAN, we pass a pixel-wise error function across the discriminator, yielding an AE which produces non-blurry samples that match both high- and low-level features of the original images. Interpolations between images in this space remain within the latent-space distribution of real images as trained by the discriminator, and therfore preserve realistic resemblances to the network inputs.




Abstract:Automatic modulation classification (AMC) is an important task for modern communication systems; however, it is a challenging problem when signal features and precise models for generating each modulation may be unknown. We present a new biologically-inspired AMC method without the need for models or manually specified features --- thus removing the requirement for expert prior knowledge. We accomplish this task using regularized stacked sparse denoising autoencoders (SSDAs). Our method selects efficient classification features directly from raw in-phase/quadrature (I/Q) radio signals in an unsupervised manner. These features are then used to construct higher-complexity abstract features which can be used for automatic modulation classification. We demonstrate this process using a dataset generated with a software defined radio, consisting of random input bits encoded in 100-sample segments of various common digital radio modulations. Our results show correct classification rates of > 99% at 7.5 dB signal-to-noise ratio (SNR) and > 92% at 0 dB SNR in a 6-way classification test. Our experiments demonstrate a dramatically new and broadly applicable mechanism for performing AMC and related tasks without the need for expert-defined or modulation-specific signal information.