Abstract:One common task in image forensics is to detect spliced images, where multiple source images are composed to one output image. Most of the currently best performing splicing detectors leverage high-frequency artifacts. However, after an image underwent strong compression, most of the high frequency artifacts are not available anymore. In this work, we explore an alternative approach to splicing detection, which is potentially better suited for images in-the-wild, subject to strong compression and downsampling. Our proposal is to model the color formation of an image. The color formation largely depends on variations at the scale of scene objects, and is hence much less dependent on high-frequency artifacts. We learn a deep metric space that is on one hand sensitive to illumination color and camera white-point estimation, but on the other hand insensitive to variations in object color. Large distances in the embedding space indicate that two image regions either stem from different scenes or different cameras. In our evaluation, we show that the proposed embedding space outperforms the state of the art on images that have been subject to strong compression and downsampling. We confirm in two further experiments the dual nature of the metric space, namely to both characterize the acquisition camera and the scene illuminant color. As such, this work resides at the intersection of physics-based and statistical forensics with benefits from both sides.
Abstract:Image provenance can represent crucial knowledge in criminal investigation and journalistic fact checking. In the last two decades, numerous algorithms have been proposed for obtaining information on the source camera and distribution history of an image. For a fair ranking of these techniques, it is important to rigorously assess their performance on practically relevant test cases. To this end, a number of datasets have been proposed. However, we argue that there is a gap in existing databases: to our knowledge, there is currently no dataset that simultaneously satisfies two goals, namely a) to cleanly separate scene content and forensic traces, and b) to support realistic post-processing like social media recompression. In this work, we propose the Forchheim Image Database (FODB) to close this gap. It consists of more than 23,000 images of 143 scenes by 27 smartphone cameras, and it allows to cleanly separate image content from forensic artifacts. Each image is provided in 6 different qualities: the original camera-native version, and five copies from social networks. We demonstrate the usefulness of FODB in an evaluation of methods for camera identification. We report three findings. First, the recently proposed general-purpose EfficientNet remarkably outperforms several dedicated forensic CNNs both on clean and compressed images. Second, classifiers obtain a performance boost even on unknown post-processing after augmentation by artificial degradations. Third, FODB's clean separation of scene content and forensic traces imposes important, rigorous boundary conditions for algorithm benchmarking.