Abstract:This study presents a chronological overview of the single image super-resolution problem. We first define the problem thoroughly and mention some of the serious challenges. Then the problem formulation and the performance metrics are defined. We give an overview of the previous methods relying on reconstruction based solutions and then continue with the deep learning approaches. We pick 3 landmark architectures and present their results quantitatively. We see that the latest proposed network gives favorable output compared to the previous methods.
Abstract:Blind single image deblurring has been a challenge over many decades due to the ill-posed nature of the problem. In this paper, we propose a single-frame blind deblurring solution with the aid of Laplacian filters. Utilized Residual Dense Network has proven its strengths in superresolution task, thus we selected it as a baseline architecture. We evaluated the proposed solution with state-of-art DNN methods on a benchmark dataset. The proposed method shows significant improvement in image quality measured objectively and subjectively.