Abstract:To retrieve and compare scientific data of simulations and experiments in materials science, data needs to be easily accessible and machine readable to qualify and quantify various materials science phenomena. The recent progress in open science leverages the accessibility to data. However, a majority of information is encoded within scientific documents limiting the capability of finding suitable literature as well as material properties. This manuscript showcases an automated workflow, which unravels the encoded information from scientific literature to a machine readable data structure of texts, figures, tables, equations and meta-data, using natural language processing and language as well as vision transformer models to generate a machine-readable database. The machine-readable database can be enriched with local data, as e.g. unpublished or private material data, leading to knowledge synthesis. The study shows that such an automated workflow accelerates information retrieval, proximate context detection and material property extraction from multi-modal input data exemplarily shown for the research field of microstructural analyses of face-centered cubic single crystals. Ultimately, a Retrieval-Augmented Generation (RAG) based Large Language Model (LLM) enables a fast and efficient question answering chat bot.
Abstract:Acoustic emission signals have been shown to accompany avalanche-like events in materials, such as dislocation avalanches in crystalline solids, collapse of voids in porous matter or domain wall movement in ferroics. The data provided by acoustic emission measurements is tremendously rich, but it is rather challenging to precisely connect it to the characteristics of the triggering avalanche. In our work we propose a machine learning based method with which one can infer microscopic details of dislocation avalanches in micropillar compression tests from merely acoustic emission data. As it is demonstrated in the paper, this approach is suitable for the prediction of the force-time response as it can provide outstanding prediction for the temporal location of avalanches and can also predict the magnitude of individual deformation events. Various descriptors (including frequency dependent and independent ones) are utilised in our machine learning approach and their importance in the prediction is analysed. The transferability of the method to other specimen sizes is also demonstrated and the possible application in more generic settings is discussed.