Abstract:We introduce ALT, an open-source Python package created for efficient and accurate time series classification (TSC). The package implements the adaptive law-based transformation (ALT) algorithm, which transforms raw time series data into a linearly separable feature space using variable-length shifted time windows. This adaptive approach enhances its predecessor, the linear law-based transformation (LLT), by effectively capturing patterns of varying temporal scales. The software is implemented for scalability, interpretability, and ease of use, achieving state-of-the-art performance with minimal computational overhead. Extensive benchmarking on real-world datasets demonstrates the utility of ALT for diverse TSC tasks in physics and related domains.
Abstract:Time series classification (TSC) is fundamental in numerous domains, including finance, healthcare, and environmental monitoring. However, traditional TSC methods often struggle with the inherent complexity and variability of time series data. Building on our previous work with the linear law-based transformation (LLT) - which improved classification accuracy by transforming the feature space based on key data patterns - we introduce adaptive law-based transformation (ALT). ALT enhances LLT by incorporating variable-length shifted time windows, enabling it to capture distinguishing patterns of various lengths and thereby handle complex time series more effectively. By mapping features into a linearly separable space, ALT provides a fast, robust, and transparent solution that achieves state-of-the-art performance with only a few hyperparameters.