Abstract:Successful flood recovery and evacuation require access to reliable flood depth information. Most existing flood mapping tools do not provide real-time flood maps of inundated streets in and around residential areas. In this paper, a deep convolutional network is used to determine flood depth with high spatial resolution by analyzing crowdsourced images of submerged traffic signs. Testing the model on photos from a recent flood in the U.S. and Canada yields a mean absolute error of 6.978 in., which is on par with previous studies, thus demonstrating the applicability of this approach to low-cost, accurate, and real-time flood risk mapping.
Abstract:Water events are the most frequent and costliest climate disasters around the world. In the U.S., an estimated 127 million people who live in coastal areas are at risk of substantial home damage from hurricanes or flooding. In flood emergency management, timely and effective spatial decision-making and intelligent routing depend on flood depth information at a fine spatiotemporal scale. In this paper, crowdsourcing is utilized to collect photos of submerged stop signs, and pair each photo with a pre-flood photo taken at the same location. Each photo pair is then analyzed using deep neural network and image processing to estimate the depth of floodwater in the location of the photo. Generated point-by-point depth data is converted to a flood inundation map and used by an A* search algorithm to determine an optimal flood-free path connecting points of interest. Results provide crucial information to rescue teams and evacuees by enabling effective wayfinding during flooding events.