Abstract:We study the finger vein (FV) sensor model identification task using a deep learning approach. So far, for this biometric modality, only correlation-based PRNU and texture descriptor-based methods have been applied. We employ five prominent CNN architectures covering a wide range of CNN family models, including VGG16, ResNet, and the Xception model. In addition, a novel architecture termed FV2021 is proposed in this work, which excels by its compactness and a low number of parameters to be trained. Original samples, as well as the region of interest data from eight publicly accessible FV datasets, are used in experimentation. An excellent sensor identification AUC-ROC score of 1.0 for patches of uncropped samples and 0.9997 for ROI samples have been achieved. The comparison with former methods shows that the CNN-based approach is superior and improved the results.
Abstract:Identifying the origin of a sample image in biometric systems can be beneficial for data authentication in case of attacks against the system and for initiating sensor-specific processing pipelines in sensor-heterogeneous environments. Motivated by shortcomings of the photo response non-uniformity (PRNU) based method in the biometric context, we use a texture classification approach to detect the origin of finger vein sample images. Based on eight publicly available finger vein datasets and applying eight classical yet simple texture descriptors and SVM classification, we demonstrate excellent sensor model identification results for raw finger vein samples as well as for the more challenging region of interest data. The observed results establish texture descriptors as effective competitors to PRNU in finger vein sensor model identification.