Abstract:The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness, yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation -- a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. Our findings indicate that prompt-based defenses are insufficient, as malicious inputs can corrupt an agent's stored context, creating cascading vulnerabilities across interactions and platforms. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.
Abstract:In spoken dialogue systems, we aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans. Dialogue systems are increasingly being designed to move beyond just imitating conversation and also improve from such interactions over time. In this survey, we present a broad overview of methods developed to build dialogue systems over the years. Different use cases for dialogue systems ranging from task-based systems to open domain chatbots motivate and necessitate specific systems. Starting from simple rule-based systems, research has progressed towards increasingly complex architectures trained on a massive corpus of datasets, like deep learning systems. Motivated with the intuition of resembling human dialogues, progress has been made towards incorporating emotions into the natural language generator, using reinforcement learning. While we see a trend of highly marginal improvement on some metrics, we find that limited justification exists for the metrics, and evaluation practices are not uniform. To conclude, we flag these concerns and highlight possible research directions.