Abstract:Medication errors significantly threaten patient safety, leading to adverse drug events and substantial economic burdens on healthcare systems. Clinical Decision Support Systems (CDSSs) aimed at mitigating these errors often face limitations, including reliance on static databases and rule-based algorithms, which can result in high false alert rates and alert fatigue among clinicians. This paper introduces HELIOT, an innovative CDSS for drug allergy management, integrating Large Language Models (LLMs) with a comprehensive pharmaceutical data repository. HELIOT leverages advanced natural language processing capabilities to interpret complex medical texts and synthesize unstructured data, overcoming the limitations of traditional CDSSs. An empirical evaluation using a synthetic patient dataset and expert-verified ground truth demonstrates HELIOT's high accuracy, precision, recall, and F1 score, uniformly reaching 100\% across multiple experimental runs. The results underscore HELIOT's potential to enhance decision support in clinical settings, offering a scalable, efficient, and reliable solution for managing drug allergies.
Abstract:Data augmentation (DA) enhances model generalization in computer vision but may introduce biases, impacting class accuracy unevenly. Our study extends this inquiry, examining DA's class-specific bias across various datasets, including those distinct from ImageNet, through random cropping. We evaluated this phenomenon with ResNet50, EfficientNetV2S, and SWIN ViT, discovering that while residual models showed similar bias effects, Vision Transformers exhibited greater robustness or altered dynamics. This suggests a nuanced approach to model selection, emphasizing bias mitigation. We also refined a "data augmentation robustness scouting" method to manage DA-induced biases more efficiently, reducing computational demands significantly (training 112 models instead of 1860; a reduction of factor 16.2) while still capturing essential bias trends.