Abstract:Lung cancer, a severe form of malignant tumor that originates in the tissues of the lungs, can be fatal if not detected in its early stages. It ranks among the top causes of cancer-related mortality worldwide. Detecting lung cancer manually using chest X-Ray image or Computational Tomography (CT) scans image poses significant challenges for radiologists. Hence, there is a need for automatic diagnosis system of lung cancers from radiology images. With the recent emergence of deep learning, particularly through Convolutional Neural Networks (CNNs), the automated detection of lung cancer has become a much simpler task. Nevertheless, numerous researchers have addressed that the performance of conventional CNNs may be hindered due to class imbalance issue, which is prevalent in medical images. In this research work, we have proposed a novel CNN architecture ``Multi-Scale Dense Network (MSD-Net)'' (trained-from-scratch). The novelties we bring in the proposed model are (I) We introduce novel dense modules in the 4th block and 5th block of the CNN model. We have leveraged 3 depthwise separable convolutional (DWSC) layers, and one 1x1 convolutional layer in each dense module, in order to reduce complexity of the model considerably. (II) Additionally, we have incorporated one skip connection from 3rd block to 5th block and one parallel branch connection from 4th block to Global Average Pooling (GAP) layer. We have utilized dilated convolutional layer (with dilation rate=2) in the last parallel branch in order to extract multi-scale features. Extensive experiments reveal that our proposed model has outperformed latest CNN model ConvNext-Tiny, recent trend Vision Transformer (ViT), Pooling-based ViT (PiT), and other existing models by significant margins.
Abstract:This paper proposes a novel pooling-based VGG-Lite model in order to mitigate class imbalance issues in Chest X-Ray (CXR) datasets. Automatic Pneumonia detection from CXR images by deep learning model has emerged as a prominent and dynamic area of research, since the inception of the new Covid-19 variant in 2020. However, the standard Convolutional Neural Network (CNN) models encounter challenges associated with class imbalance, a prevalent issue found in many medical datasets. The innovations introduced in the proposed model architecture include: (I) A very lightweight CNN model, `VGG-Lite', is proposed as a base model, inspired by VGG-16 and MobileNet-V2 architecture. (II) On top of this base model, we leverage an ``Edge Enhanced Module (EEM)" through a parallel branch, consisting of a ``negative image layer", and a novel custom pooling layer ``2Max-Min Pooling". This 2Max-Min Pooling layer is entirely novel in this investigation, providing more attention to edge components within pneumonia CXR images. Thus, it works as an efficient spatial attention module (SAM). We have implemented the proposed framework on two separate CXR datasets. The first dataset is obtained from a readily available source on the internet, and the second dataset is a more challenging CXR dataset, assembled by our research team from three different sources. Experimental results reveal that our proposed framework has outperformed pre-trained CNN models, and three recent trend existing models ``Vision Transformer", ``Pooling-based Vision Transformer (PiT)'' and ``PneuNet", by substantial margins on both datasets. The proposed framework VGG-Lite with EEM, has achieved a macro average of 95% accuracy, 97.1% precision, 96.1% recall, and 96.6% F1 score on the ``Pneumonia Imbalance CXR dataset", without employing any pre-processing technique.
Abstract:This research proposes a very lightweight model "Fibonacci-Net" along with a novel pooling technique, for automatic brain tumor classification from imbalanced Magnetic Resonance Imaging (MRI) datasets. Automatic brain tumor detection from MRI dataset has garnered significant attention in the research community, since the inception of Convolutional Neural Network (CNN) models. However, the performance of conventional CNN models is hindered due to class imbalance problems. The novelties of this work are as follows: (I) A lightweight CNN model is proposed in which the number of filters in different convolutional layers is chosen according to the numbers of Fibonacci series. (II) In the last two blocks of the proposed model, depth-wise separable convolution (DWSC) layers are employed to considerably reduce the computational complexity of the model. (III) Two parallel concatenations (or, skip connections) are deployed from 2nd to 4th, and 3rd to 5th convolutional block in the proposed Fibonacci-Net. This skip connection encompasses a novel Average-2Max pooling layer that produces two stacks of convoluted output, having a bit different statistics. Therefore, this parallel concatenation block works as an efficient feature augmenter inside the model, thus, automatically alleviating the class imbalance problem to a certain extent. For validity purpose, we have implemented the proposed framework on three MRI datasets which are highly class-imbalanced. (a) The first dataset has four classes, i.e., glioma tumor, meningioma tumor, pituitary tumor, and no-tumor. (b) Second and third MRI datasets have 15 and 44 classes respectively. Experimental results reveal that, after employing the proposed Fibonacci-Net we have achieved 96.2% accuracy, 97.17% precision, 95.9% recall, 96.5% F1 score, and 99.9% specificity on the most challenging ``44-classes MRI dataset''.
Abstract:A novel ``edge attention-based Convolutional Neural Network (CNN)'' is proposed in this research for object classification task. With the advent of advanced computing technology, CNN models have achieved to remarkable success, particularly in computer vision applications. Nevertheless, the efficacy of the conventional CNN is often hindered due to class imbalance and inter-class similarity problems, which are particularly prominent in the computer vision field. In this research, we introduce for the first time an ``Edge Attention Module (EAM)'' consisting of a Max-Min pooling layer, followed by convolutional layers. This Max-Min pooling is entirely a novel pooling technique, specifically designed to capture only the edge information that is crucial for any object classification task. Therefore, by integrating this novel pooling technique into the attention module, the CNN network inherently prioritizes on essential edge features, thereby boosting the accuracy and F1-score of the model significantly. We have implemented our proposed EAM or 2EAMs on several standard pre-trained CNN models for Caltech-101, Caltech-256, CIFAR-100 and Tiny ImageNet-200 datasets. The extensive experiments reveal that our proposed framework (that is, EAM with CNN and 2EAMs with CNN), outperforms all pre-trained CNN models as well as recent trend models ``Pooling-based Vision Transformer (PiT)'', ``Convolutional Block Attention Module (CBAM)'', and ConvNext, by substantial margins. We have achieved the accuracy of 95.5% and 86% by the proposed framework on Caltech-101 and Caltech-256 datasets, respectively. So far, this is the best results on these datasets, to the best of our knowledge.