Abstract:Quantum Machine Learning (QML) has gathered significant attention through approaches like Quantum Kernel Machines. While these methods hold considerable promise, their quantum nature presents inherent challenges. One major challenge is the limited resolution of estimated kernel values caused by the finite number of circuit runs performed on a quantum device. In this study, we propose a comprehensive system of rules and heuristics for estimating the required number of circuit runs in quantum kernel methods. We introduce two critical effects that necessitate an increased measurement precision through additional circuit runs: the spread effect and the concentration effect. The effects are analyzed in the context of fidelity and projected quantum kernels. To address these phenomena, we develop an approach for estimating desired precision of kernel values, which, in turn, is translated into the number of circuit runs. Our methodology is validated through extensive numerical simulations, focusing on the problem of exponential value concentration. We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption. The results provide insights into the possible benefits of quantum kernel methods, offering a guidance for their application in quantum machine learning tasks.
Abstract:The industry of quantum technologies is rapidly expanding, offering promising opportunities for various scientific domains. Among these emerging technologies, Quantum Machine Learning (QML) has attracted considerable attention due to its potential to revolutionize data processing and analysis. In this paper, we investigate the application of QML in the field of remote sensing. It is believed that QML can provide valuable insights for analysis of data from space. We delve into the common beliefs surrounding the quantum advantage in QML for remote sensing and highlight the open challenges that need to be addressed. To shed light on the challenges, we conduct a study focused on the problem of kernel value concentration, a phenomenon that adversely affects the runtime of quantum computers. Our findings indicate that while this issue negatively impacts quantum computer performance, it does not entirely negate the potential quantum advantage in QML for remote sensing.
Abstract:Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of pattern recognition and classification tasks. In this work, we consider extending classic SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) is presented. It consists of the Quantum Kernel Estimation (QKE) procedure combined with a classic SVM training routine. The pixel data are mapped to the Hilbert space using ZZ-feature maps acting on the parameterized ansatz state. The parameters are optimized to maximize the kernel target alignment. We approach the problem of cloud detection in satellite image data, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy on par with classic SVMs.
Abstract:The optimization of Kernel-Target Alignment (TA) has been recently proposed as a way to reduce the number of hardware resources in quantum classifiers. It allows to exchange highly expressive and costly circuits to moderate size, task oriented ones. In this work we propose a simple toy model to study the optimization landscape of the Kernel-Target Alignment. We find that for underparameterized circuits the optimization landscape possess either many local extrema or becomes flat with narrow global extremum. We find the dependence of the width of the global extremum peak on the amount of data introduced to the model. The experimental study was performed using multispectral satellite data, and we targeted the cloud detection task, being one of the most fundamental and important image analysis tasks in remote sensing.
Abstract:Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of classification tasks. In this work, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel target alignment. The quantum kernels have been selected such that they enabled analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the RBF kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement.