Abstract:When caregivers ask open--ended questions to motivate dialogue with children, it facilitates the child's reading comprehension skills.Although there is scope for use of technological tools, referred here as "intelligent tutoring systems", to scaffold this process, it is currently unclear whether existing intelligent systems that generate human--language like questions is beneficial. Additionally, training data used in the development of these automated question generation systems is typically sourced without attention to demographics, but people with different cultural backgrounds may ask different questions. As a part of a broader project to design an intelligent reading support app for Latinx children, we crowdsourced questions from Latinx caregivers and noncaregivers as well as caregivers and noncaregivers from other demographics. We examine variations in question--asking within this dataset mediated by individual, cultural, and contextual factors. We then design a system that automatically extracts templates from this data to generate open--ended questions that are representative of those asked by Latinx caregivers.