Abstract:Deep learning techniques for anatomical landmark localization (ALL) have shown great success, but their reliance on large annotated datasets remains a problem due to the tedious and costly nature of medical data acquisition and annotation. While traditional data augmentation, variational autoencoders (VAEs), and generative adversarial networks (GANs) have already been used to synthetically expand medical datasets, diffusion-based generative models have recently started to gain attention for their ability to generate high-quality synthetic images. In this study, we explore the use of denoising diffusion probabilistic models (DDPMs) for generating medical images and their corresponding heatmaps of landmarks to enhance the training of a supervised deep learning model for ALL. Our novel approach involves a DDPM with a 2-channel input, incorporating both the original medical image and its heatmap of annotated landmarks. We also propose a novel way to assess the quality of the generated images using a Markov Random Field (MRF) model for landmark matching and a Statistical Shape Model (SSM) to check landmark plausibility, before we evaluate the DDPM-augmented dataset in the context of an ALL task involving hand X-Rays.
Abstract:The localization of teeth and segmentation of periapical lesions in cone-beam computed tomography (CBCT) images are crucial tasks for clinical diagnosis and treatment planning, which are often time-consuming and require a high level of expertise. However, automating these tasks is challenging due to variations in shape, size, and orientation of lesions, as well as similar topologies among teeth. Moreover, the small volumes occupied by lesions in CBCT images pose a class imbalance problem that needs to be addressed. In this study, we propose a deep learning-based method utilizing two convolutional neural networks: the SpatialConfiguration-Net (SCN) and a modified version of the U-Net. The SCN accurately predicts the coordinates of all teeth present in an image, enabling precise cropping of teeth volumes that are then fed into the U-Net which detects lesions via segmentation. To address class imbalance, we compare the performance of three reweighting loss functions. After evaluation on 144 CBCT images, our method achieves a 97.3% accuracy for teeth localization, along with a promising sensitivity and specificity of 0.97 and 0.88, respectively, for subsequent lesion detection.