Abstract:Artificial intelligence (AI) technologies are widely deployed in smartphone photography; and prompt-based image synthesis models have rapidly become commonplace. In this paper, we describe a Research-through-Design (RtD) project which explores this shift in the means and modes of image production via the creation and use of the Entoptic Field Camera. Entoptic phenomena usually refer to perceptions of floaters or bright blue dots stemming from the physiological interplay of the eye and brain. We use the term entoptic as a metaphor to investigate how the material interplay of data and models in AI technologies shapes human experiences of reality. Through our case study using first-person design and a field study, we offer implications for critical, reflective, more-than-human and ludic design to engage AI technologies; the conceptualisation of an RtD research space which contributes to AI literacy discourses; and outline a research trajectory concerning materiality and design affordances of AI technologies.
Abstract:Design research is important for understanding and interrogating how emerging technologies shape human experience. However, design research with Machine Learning (ML) is relatively underdeveloped. Crucially, designers have not found a grasp on ML uncertainty as a design opportunity rather than an obstacle. The technical literature points to data and model uncertainties as two main properties of ML. Through post-phenomenology, we position uncertainty as one defining material attribute of ML processes which mediate human experience. To understand ML uncertainty as a design material, we investigate four design research case studies involving ML. We derive three provocative concepts: thingly uncertainty: ML-driven artefacts have uncertain, variable relations to their environments; pattern leakage: ML uncertainty can lead to patterns shaping the world they are meant to represent; and futures creep: ML technologies texture human relations to time with uncertainty. Finally, we outline design research trajectories and sketch a post-phenomenological approach to human-ML relations.