Abstract:This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
Abstract:The delivery of Medical Countermeasures(MCMs) for mass prophylaxis in the case of a bio-terrorist attack is an active research topic that has interested the research community over the past decades. The objective of this study is to design an efficient algorithm for the Receive Reload and Store Problem(RSS) in which we aim to find feasible routes to deliver MCMs to a target population considering time, physical, and human resources, and capacity limitations. For doing this, we adapt the p-median problem to the POD-based emergency response planning procedures and propose an efficient algorithm solution to perform the p-median in reasonable computational time. We present RE-PLAN, the Response PLan Analyzer system that contains some RSS solutions developed at The Center for Computational Epidemiology and Response Analysis (CeCERA) at the University of North Texas. Finally, we analyze a study case where we show how the computational performance of the algorithm can impact the process of decision making and emergency planning in the short and long terms.