Abstract:In today's day and age where information is rapidly spread through online platforms, the rise of fake news poses an alarming threat to the integrity of public discourse, societal trust, and reputed news sources. Classical machine learning and Transformer-based models have been extensively studied for the task of fake news detection, however they are hampered by their reliance on training data and are unable to generalize on unseen headlines. To address these challenges, we propose our novel solution, leveraging web-scraping techniques and Natural Language Inference (NLI) models to retrieve external knowledge necessary for verifying the accuracy of a headline. Our system is evaluated on a diverse self-curated evaluation dataset spanning over multiple news channels and broad domains. Our best performing pipeline achieves an accuracy of 84.3% surpassing the best classical Machine Learning model by 33.3% and Bidirectional Encoder Representations from Transformers (BERT) by 31.0% . This highlights the efficacy of combining dynamic web-scraping with Natural Language Inference to find support for a claimed headline in the corresponding externally retrieved knowledge for the task of fake news detection.
Abstract:This paper addresses the pressing need for an accurate solar energy prediction model, which is crucial for efficient grid integration. We explore the influence of the Air Quality Index and weather features on solar energy generation, employing advanced Machine Learning and Deep Learning techniques. Our methodology uses time series modeling and makes novel use of power transform normalization and zero-inflated modeling. Various Machine Learning algorithms and Conv2D Long Short-Term Memory model based Deep Learning models are applied to these transformations for precise predictions. Results underscore the effectiveness of our approach, demonstrating enhanced prediction accuracy with Air Quality Index and weather features. We achieved a 0.9691 $R^2$ Score, 0.18 MAE, 0.10 RMSE with Conv2D Long Short-Term Memory model, showcasing the power transform technique's innovation in enhancing time series forecasting for solar energy generation. Such results help our research contribute valuable insights to the synergy between Air Quality Index, weather features, and Deep Learning techniques for solar energy prediction.