Abstract:The cable-based arrestment systems are integral to the launch and recovery of aircraft onboard carriers and on expeditionary land-based installations. These modern arrestment systems rely on various mechanisms to absorb energy from an aircraft during an arrestment cycle to bring the aircraft to a full stop. One of the primary components of this system is the cable interface to the engine. The formation of slack in the cable at this interface can result in reduced efficiency and drives maintenance efforts to remove the slack prior to continued operations. In this paper, a machine vision based slack detection system is presented. A situational awareness camera is utilized to collect video data of the cable interface region, machine vision algorithms are applied to reduce noise, remove background clutter, focus on regions of interest, and detect changes in the image representative of slack formations. Some algorithms employed in this system include bilateral image filters, least squares polynomial fit, Canny Edge Detection, K-Means clustering, Gaussian Mixture-based Background/Foreground Segmentation for background subtraction, Hough Circle Transforms, and Hough line Transforms. The resulting detections are filtered and highlighted to create an indication to the shipboard operator of the presence of slack and a need for a maintenance action. A user interface was designed to provide operators with an easy method to redefine regions of interest and adjust the methods to specific locations. The algorithms were validated on shipboard footage and were able to accurately identify slack with minimal false positives.
Abstract:Aircraft Ship Integrated Secure and Traverse (ASIST) is a system designed to arrest helicopters safely and efficiently on ships. Originally, a precision Helicopter Position Sensing Equipment (HPSE) tracked and monitored the position of the helicopter relative to the Rapid Securing Device (RSD). However, using the HPSE component was determined to be infeasible in the transition of the ASIST system due to the hardware installation requirements. As a result, sailors track the position of the helicopters with their eyes with no sensor or artificially intelligent decision aid. Manually tracking the helicopter takes additional time and makes recoveries more difficult, especially at high sea states. Performing recoveries without the decision aid leads to higher uncertainty and cognitive load. PETA (Pose Estimation and Tracking for ASIST) is a research effort to create a helicopter tracking system prototype without hardware installation requirements for ASIST system operators. Its overall goal is to improve situational awareness and reduce operator uncertainty with respect to the aircrafts position relative to the RSD, and consequently increase the allowable landing area. The authors produced a prototype system capable of tracking helicopters with respect to the RSD. The software included a helicopter pose estimation component, camera pose estimation component, and a user interface component. PETA demonstrated the potential for state-of-the-art computer vision algorithms Faster R-CNN and HRNet (High-Resolution Network) to be used to estimate the pose of helicopters in real-time, returning ASIST to its originally intended capability. PETA also demonstrated that traditional methods of encoder-decoders could be used to estimate the orientation of the helicopter and could be used to confirm the output from HRNet.
Abstract:Real-time situational awareness for the location of assets is critical to ensure missions are completed efficiently and requirements are satisfied. In many commercial settings, the application of global positioning system (GPS) sensors is appropriate to achieve timely knowledge of the position of people and equipment. However, GPS sensors are not appropriate for all situations due to flight clearance and operations security concerns. LIFT OFF: LoRaWAN Installation and Fiducial Tracking Operations for the Flightline of the Future proposes a hybrid framework solution to achieve real-time situational awareness for people, support equipment, and aircraft positions regardless of the environment. This framework included a machine-vision component, which involved setting up cameras to detect AprilTag decals that were installed on the sides of aircraft. The framework included a geolocation sensor component, which involved installing GPS sensors on support equipment and helmets. The framework also included creating a long-range wide area network (LoRaWAN) to transfer data and developing a user interface to display the data. The framework was tested at Naval Air Station Oceana Flightline, the United States Naval Test Pilot School, and at Naval Air Warfare Center Aircraft Division Lakehurst. LIFT OFF successfully provided a real-time updating map of all tracked assets using GPS sensors for people and support equipment and with visual fiducials for aircraft. The trajectories of the assets were recorded for logistical analysis and playback. Future follow-on work is anticipated to apply the technology to other environments including carriers and amphibious assault ships in addition to the flightline.
Abstract:Deck tracking performed on carriers currently involves a team of sailors manually identifying aircraft and updating a digital user interface called the Ouija Board. Improvements to the deck tracking process would result in increased Sortie Generation Rates, and therefore applying automation is seen as a critical method to improve deck tracking. However, the requirements on a carrier ship do not allow for the installation of hardware-based location sensing technologies like Global Positioning System (GPS) sensors. PATRIOT (Panoramic Asset Tracking of Real-Time Information for the Ouija Tabletop) is a research effort and proposed solution to performing deck tracking with passive sensing and without the need for GPS sensors. PATRIOT is a prototype system which takes existing camera feeds, calculates aircraft poses, and updates a virtual Ouija board interface with the current status of the assets. PATRIOT would allow for faster, more accurate, and less laborious asset tracking for aircraft, people, and support equipment. PATRIOT is anticipated to benefit the warfighter by reducing cognitive workload, reducing manning requirements, collecting data to improve logistics, and enabling an automation gateway for future efforts to improve efficiency and safety. The authors have developed and tested algorithms to perform pose estimations of assets in real-time including OpenPifPaf, High-Resolution Network (HRNet), HigherHRNet (HHRNet), Faster R-CNN, and in-house developed encoder-decoder network. The software was tested with synthetic and real-world data and was able to accurately extract the pose of assets. Fusion, tracking, and real-world generality are planned to be improved to ensure a successful transition to the fleet.
Abstract:The future success of the Navy will depend, in part, on artificial intelligence. In practice, many artificially intelligent algorithms, and in particular deep learning models, rely on continual learning to maintain performance in dynamic environments. The software requires adaptation to maintain its initial level of performance in unseen situations. However, if not monitored properly, continual learning may lead to several issues including catastrophic forgetting in which a trained model forgets previously learned tasks when being retrained on new data. The authors created a new framework for safely performing continual learning with the goal of pairing this safety framework with a deep learning computer vision algorithm to allow for safe and high-performing automatic deck tracking on carriers and amphibious assault ships. The safety framework includes several features, such as an ensemble of convolutional neural networks to perform image classification, a manager to record confidences and determine the best answer from the ensemble, a model of the environment to predict when the system may fail to meet minimum performance metrics, a performance monitor to log system and domain performance and check against requirements, and a retraining component to update the ensemble and manager to maintain performance. The authors validated the proposed method using extensive simulation studies based on dynamic image classification. The authors showed the safety framework could probabilistically detect out of distribution data. The results also show the framework can detect when the system is no longer performing safely and can significantly extend the working envelope of an image classifier.