Abstract:TGraphX presents a novel paradigm in deep learning by unifying convolutional neural networks (CNNs) with graph neural networks (GNNs) to enhance visual reasoning tasks. Traditional CNNs excel at extracting rich spatial features from images but lack the inherent capability to model inter-object relationships. Conversely, conventional GNNs typically rely on flattened node features, thereby discarding vital spatial details. TGraphX overcomes these limitations by employing CNNs to generate multi-dimensional node features (e.g., (3*128*128) tensors) that preserve local spatial semantics. These spatially aware nodes participate in a graph where message passing is performed using 1*1 convolutions, which fuse adjacent features while maintaining their structure. Furthermore, a deep CNN aggregator with residual connections is used to robustly refine the fused messages, ensuring stable gradient flow and end-to-end trainability. Our approach not only bridges the gap between spatial feature extraction and relational reasoning but also demonstrates significant improvements in object detection refinement and ensemble reasoning.