Abstract:State space models (SSMs) often sacrifice capacity, search space, or stability to offset the memory and compute costs of large state dimensions. We introduce a structured post-training pruning method for SSMs -- AIRE-Prune (Asymptotic Impulse-Response Energy for State PRUN(E)) -- that reduces each layer's state dimension by directly minimizing long-run output-energy distortion. AIRE-Prune assigns every state a closed-form asymptotic impulse-response energy-based score, i.e., the total impulse-response energy it contributes over an infinite horizon (time), and normalizes these scores layer-wise to enable global cross-layer comparison and selection. This extends modal truncation from single systems to deep stacks and aligns pruning with asymptotic response energy rather than worst-case gain. Across diverse sequence benchmarks, AIRE-Prune reveals substantial redundancy in SISO and MIMO SSMs with average pruning of 60.8%, with average accuracy drop of 0.29% without retraining, while significantly lowering compute. Code: https://github.com/falcon-arrow/AIRE-Prune.
Abstract:Accurate weather forecasting holds significant importance, serving as a crucial tool for decision-making in various industrial sectors. The limitations of statistical models, assuming independence among data points, highlight the need for advanced methodologies. The correlation between meteorological variables necessitate models capable of capturing complex dependencies. This research highlights the practical efficacy of employing advanced machine learning techniques proposing GenHybQLSTM and BO-QEnsemble architecture based on adaptive weight adjustment strategy. Through comprehensive hyper-parameter optimization using hybrid quantum genetic particle swarm optimisation algorithm and Bayesian Optimization, our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions through the assessment of performance metrics such as MSE (Mean Squared Error) and MAPE (Mean Absolute Percentage Prediction Error). The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.