Abstract:This paper considers a large class of problems where we seek to recover a low rank matrix and/or sparse vector from some set of measurements. While methods based on convex relaxations suffer from a (possibly large) estimator bias, and other nonconvex methods require the rank or sparsity to be known a priori, we use nonconvex regularizers to minimize the rank and $l_0$ norm without the estimator bias from the convex relaxation. We present a novel analysis of the alternating proximal gradient descent algorithm applied to such problems, and bound the error between the iterates and the ground truth sparse and low rank matrices. The algorithm and error bound can be applied to sparse optimization, matrix completion, and robust principal component analysis as special cases of our results.
Abstract:Rank minimization is of interest in machine learning applications such as recommender systems and robust principal component analysis. Minimizing the convex relaxation to the rank minimization problem, the nuclear norm, is an effective technique to solve the problem with strong performance guarantees. However, nonconvex relaxations have less estimation bias than the nuclear norm and can more accurately reduce the effect of noise on the measurements. We develop efficient algorithms based on iteratively reweighted nuclear norm schemes, while also utilizing the low rank factorization for semidefinite programs put forth by Burer and Monteiro. We prove convergence and computationally show the advantages over convex relaxations and alternating minimization methods. Additionally, the computational complexity of each iteration of our algorithm is on par with other state of the art algorithms, allowing us to quickly find solutions to the rank minimization problem for large matrices.